{ "id": "1307.1785", "version": "v1", "published": "2013-07-06T13:57:17.000Z", "updated": "2013-07-06T13:57:17.000Z", "title": "Harmonic analysis on Lagrangian manifolds of integrable Hamiltonian systems", "authors": [ "Julia Bernatska", "Petro Holod" ], "comment": "13 pages, XIVth International Conference 'Geometry, Integrability and Quantization', June 8-13, 2012, Varna, Bulgaria", "journal": "Journal of Geometry and Symmetry in Physics 29 (2013) P.39-51", "doi": "10.7546/jgsp-29-2013-39-51", "categories": [ "math-ph", "math.MP", "quant-ph" ], "abstract": "For an integrable Hamiltonian system we construct a representation of the phase space symmetry algebra over the space of functions on a Lagrangian manifold. The representation is a result of the canonical quantization of the integrable system in terms of separation variables. The variables are chosen in such way that a half of them parameterizes the Lagrangian manifold, which coincides with the Liouville torus of the integrable system. The obtained representation is indecomposable and non-exponentiated.", "revisions": [ { "version": "v1", "updated": "2013-07-06T13:57:17.000Z" } ], "analyses": { "subjects": [ "22E47", "22E70", "81R05" ], "keywords": [ "integrable hamiltonian system", "lagrangian manifold", "harmonic analysis", "phase space symmetry algebra", "integrable system" ], "tags": [ "conference paper", "journal article" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.1785B" } } }