{ "id": "1307.1633", "version": "v1", "published": "2013-07-05T15:09:08.000Z", "updated": "2013-07-05T15:09:08.000Z", "title": "The number of reducible space curves over a finite field", "authors": [ "Eda Cesaratto", "Joachim von zur Gathen", "Guillermo Matera" ], "doi": "10.1016/j.jnt.2012.08.027", "categories": [ "math.NT", "math.AG" ], "abstract": "\"Most\" hypersurfaces in projective space are irreducible, and rather precise estimates are known for the probability that a random hypersurface over a finite field is reducible. This paper considers the parametrization of space curves by the appropriate Chow variety, and provides bounds on the probability that a random curve over a finite field is reducible.", "revisions": [ { "version": "v1", "updated": "2013-07-05T15:09:08.000Z" } ], "analyses": { "subjects": [ "11G20" ], "keywords": [ "finite field", "reducible space curves", "appropriate chow variety", "probability", "random hypersurface" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.1633C" } } }