{ "id": "1307.1440", "version": "v2", "published": "2013-07-04T18:13:38.000Z", "updated": "2014-08-20T16:57:25.000Z", "title": "BGG reciprocity for current algebras", "authors": [ "Vyjayanthi Chari", "Bogdan Ion" ], "comment": "23 pg, corrections to Lemma 2.14", "categories": [ "math.RT", "math.CO", "math.QA" ], "abstract": "It was conjectured by Bennett, Chari, and Manning that a BGG-type reciprocity holds for the category of graded representations with finite-dimensional graded components for the current algebra associated to a simple Lie algebra. We associate a current algebra to any indecomposable affine Lie algebra and show that, in this generality, the BGG reciprocity is true for the corresponding category of representations.", "revisions": [ { "version": "v1", "updated": "2013-07-04T18:13:38.000Z", "comment": "22 pg", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-08-20T16:57:25.000Z" } ], "analyses": { "subjects": [ "17B10", "17B67" ], "keywords": [ "current algebra", "bgg reciprocity", "simple lie algebra", "indecomposable affine lie algebra", "bgg-type reciprocity holds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.1440C" } } }