{ "id": "1307.1414", "version": "v1", "published": "2013-07-04T17:06:45.000Z", "updated": "2013-07-04T17:06:45.000Z", "title": "On the average number of subgroups of the group $\\Z_m \\times \\Z_n$", "authors": [ "Werner Georg Nowak", "László Tóth" ], "comment": "14 pages", "journal": "Int. J. Number Theory 10 (2014), 363-374", "doi": "10.1142/S179304211350098X", "categories": [ "math.NT", "math.GR" ], "abstract": "Let $\\Z_m$ be the group of residue classes modulo $m$. Let $s(m,n)$ and $c(m,n)$ denote the total number of subgroups of the group $\\Z_m \\times \\Z_n$ and the number of its cyclic subgroups, respectively, where $m$ and $n$ are arbitrary positive integers. We derive asymptotic formulas for the sums $\\sum_{m,n\\le x} s(m,n)$, $\\sum_{m,n\\le x} c(m,n)$ and for the corresponding sums restricted to $\\gcd(m,n)>1$, i.e., concerning the groups $\\Z_m \\times \\Z_n$ having rank two.", "revisions": [ { "version": "v1", "updated": "2013-07-04T17:06:45.000Z" } ], "analyses": { "subjects": [ "11A25", "11N37", "20K01", "20K27" ], "keywords": [ "average number", "residue classes modulo", "cyclic subgroups", "arbitrary positive integers", "derive asymptotic formulas" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.1414N" } } }