{ "id": "1307.0879", "version": "v1", "published": "2013-07-02T23:23:34.000Z", "updated": "2013-07-02T23:23:34.000Z", "title": "Cohen-Lenstra heuristics and random matrix theory over finite fields", "authors": [ "Jason Fulman" ], "categories": [ "math.NT", "math.CO" ], "abstract": "Let g be a random element of a finite classical group G, and let \\lambda_{z-1}(g) denote the partition corresponding to the polynomial z-1 in the rational canonical form of g. As the rank of G tends to infinity, \\lambda_{z-1}(g) tends to a partition distributed according to a Cohen-Lenstra type measure on partitions. We give sharp upper and lower bounds on the total variation distance between the random partition \\lambda_{z-1}(g) and the Cohen-Lenstra type measure.", "revisions": [ { "version": "v1", "updated": "2013-07-02T23:23:34.000Z" } ], "analyses": { "keywords": [ "random matrix theory", "cohen-lenstra heuristics", "finite fields", "cohen-lenstra type measure", "total variation distance" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.0879F" } } }