{ "id": "1307.0184", "version": "v3", "published": "2013-06-30T07:31:20.000Z", "updated": "2014-06-10T18:25:32.000Z", "title": "Products and countable dense homogeneity", "authors": [ "Andrea Medini" ], "comment": "7 pages", "categories": [ "math.GN" ], "abstract": "Building on work of Baldwin and Beaudoin, assuming Martin's Axiom, we construct a zero-dimensional separable metrizable space $X$ such that $X$ is countable dense homogeneous while $X^2$ is not. It follows from results of Hru\\v{s}\\'ak and Zamora Avil\\'es that such a space $X$ cannot be Borel. Furthermore, $X$ can be made homogeneous and completely Baire as well.", "revisions": [ { "version": "v3", "updated": "2014-06-10T18:25:32.000Z" } ], "analyses": { "subjects": [ "54G20", "03E50", "54H05" ], "keywords": [ "countable dense homogeneity", "zamora aviles", "zero-dimensional separable metrizable space", "assuming martins axiom" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.0184M" } } }