{ "id": "1306.6033", "version": "v1", "published": "2013-06-25T17:01:12.000Z", "updated": "2013-06-25T17:01:12.000Z", "title": "The Large-$N$ Limits of Brownian Motions on $\\mathbb{GL}_N$", "authors": [ "Todd Kemp" ], "categories": [ "math.PR", "math.FA" ], "abstract": "We introduce a two-parameter family of diffusion processes $(B_{r,s}^N(t))_{t\\ge 0}$, $r,s>0$, on the general linear group $\\mathbb{GL}_N$ that are Brownian motions with respect to certain natural metrics on the group. At the same time, we introduce a two-parameter family of free It\\^o processes $(b_{r,s}(t))_{t\\ge 0}$ in a faithful, tracial $W^\\ast$-probability space, and we prove that the full process $(B^N_{r,s}(t))_{t\\ge 0}$ converges to $(b_{r,s}(t))_{t\\ge 0}$ in noncommutative distribution as $N\\to\\infty$ for each $r,s>0$. The processes $(b_{r,s}(t))_{t\\ge 0}$ interpolate between the free unitary Brownian motion when $(r,s)=(1,0)$, and the free multiplicative Brownian motion when $r=s=\\frac12$; we thus resolve the open problem of convergence of the Brownian motion on $\\mathbb{GL}_N$ posed by Biane in 1997.", "revisions": [ { "version": "v1", "updated": "2013-06-25T17:01:12.000Z" } ], "analyses": { "subjects": [ "60B20", "46L54", "22E30" ], "keywords": [ "free unitary brownian motion", "free multiplicative brownian motion", "general linear group", "open problem", "natural metrics" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.6033K" } } }