{ "id": "1306.5645", "version": "v1", "published": "2013-06-24T14:47:36.000Z", "updated": "2013-06-24T14:47:36.000Z", "title": "Intersecting 1-factors and nowhere-zero 5-flows", "authors": [ "Eckhard Steffen" ], "comment": "8 pages, 1 figure", "categories": [ "math.CO" ], "abstract": "Let $G$ be a bridgeless cubic graph, and $\\mu_2(G)$ the minimum number $k$ such that two 1-factors of $G$ intersect in $k$ edges. A cyclically $n$-edge-connected cubic graph $G$ has a nowhere-zero 5-flow if (1) $n \\geq 6$ and $\\mu_2(G) \\leq 2$ or (2) if $n \\geq 5 \\mu_2(G)-3$", "revisions": [ { "version": "v1", "updated": "2013-06-24T14:47:36.000Z" } ], "analyses": { "subjects": [ "05C21" ], "keywords": [ "nowhere-zero", "edge-connected cubic graph", "bridgeless cubic graph" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.5645S" } } }