{ "id": "1306.5597", "version": "v1", "published": "2013-06-24T12:33:19.000Z", "updated": "2013-06-24T12:33:19.000Z", "title": "Isospectral deformations of the Dirac operator", "authors": [ "Oliver Knill" ], "comment": "32 pages, 8 figures", "categories": [ "math-ph", "math.MP" ], "abstract": "We give more details about an integrable system in which the Dirac operator D=d+d^* on a finite simple graph G or Riemannian manifold M is deformed using a Hamiltonian system D'=[B,h(D)] with B=d-d^* + i b. The deformed operator D(t) = d(t) + b(t) + d(t)^* defines a new exterior derivative d(t) and a new Dirac operator C(t) = d(t) + d(t)^* and Laplacian M(t) = d(t) d(t)^* + d(t)* d(t) and so a new distance on G or a new metric on M.", "revisions": [ { "version": "v1", "updated": "2013-06-24T12:33:19.000Z" } ], "analyses": { "subjects": [ "37K15", "81R12", "57M15", "81Q60" ], "keywords": [ "dirac operator", "isospectral deformations", "finite simple graph", "riemannian manifold", "hamiltonian system" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.5597K" } } }