{ "id": "1306.5322", "version": "v4", "published": "2013-06-22T13:27:17.000Z", "updated": "2015-11-09T21:06:15.000Z", "title": "Explicit formulae for primes in arithmetic progressions, I", "authors": [ "Tomohiro Yamada" ], "comment": "19 pages, appending an explicit form of BV theorem", "categories": [ "math.NT" ], "abstract": "We shall give an explicit formula for $\\psi(x, q, a)$ with an error term of the form $C/\\log^\\alpha x$ under the condition that $q<\\log^{\\alpha_1} x$ is nonexceptional, for various values of $\\alpha$ and $\\alpha_1$. We shall also give an explicit formula for $\\psi(x, q, a)$ with error terms $C/\\log^A x$ working whether $q$ is exceptional or nonexceptional, but under the condition that $\\frac{0.4923A}{\\pi}q^{1/2}\\log^2 q<\\log x/\\log\\log x$. Moreover, we shall give an explicit form of Bombieri-Vinogradov theorem over non-exceptional moduli.", "revisions": [ { "version": "v3", "updated": "2014-02-15T03:53:18.000Z", "abstract": "We shall give an explicit formula for $\\psi(x, q, l)$ with error terms $\\log\\log x/\\log^\\alpha x$ under the condition that $q<\\log^{\\alpha_1} x$ is nonexceptional, for various values of $\\alpha$ and $\\alpha_1$. We shall also give an explicit formula for $\\psi(x, q, l)$ with error terms $\\log\\log x/\\log^A x$ working whether $q$ is exceptional or nonexceptional, but under the condition that $\\frac{0.4923A}{\\pi}q^{1/2}\\log^2 q<\\log x/\\log\\log x$.", "comment": "19 pages, revised some errors and extended main theorems", "journal": null, "doi": null }, { "version": "v4", "updated": "2015-11-09T21:06:15.000Z" } ], "analyses": { "subjects": [ "11N13" ], "keywords": [ "explicit formula", "arithmetic progressions", "error terms" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.5322Y" } } }