{ "id": "1306.5266", "version": "v2", "published": "2013-06-21T22:17:15.000Z", "updated": "2013-11-07T15:00:37.000Z", "title": "On large deviations for the cover time of two-dimensional torus", "authors": [ "Francis Comets", "Christophe Gallesco", "Serguei Popov", "Marina Vachkovskaia" ], "comment": "25 pages, 5 figures", "journal": "Electronic Journal of Probability, Vol. 18, Article 96, pp.1-18 (2013)", "doi": "10.1214/EJP.v18-2856", "categories": [ "math.PR" ], "abstract": "Let $\\mathcal{T}_n$ be the cover time of two-dimensional discrete torus $\\mathbb{Z}^2_n=\\mathbb{Z}^2/n\\mathbb{Z}^2$. We prove that $\\mathbb{P}[\\mathcal{T}_n\\leq \\frac{4}{\\pi}\\gamma n^2\\ln^2 n]=\\exp(-n^{2(1-\\sqrt{\\gamma})+o(1)})$ for $\\gamma\\in (0,1)$. One of the main methods used in the proofs is the decoupling of the walker's trace into independent excursions by means of soft local times.", "revisions": [ { "version": "v2", "updated": "2013-11-07T15:00:37.000Z" } ], "analyses": { "subjects": [ "60G50", "82C41", "60G55" ], "keywords": [ "cover time", "large deviations", "two-dimensional torus", "two-dimensional discrete torus", "soft local times" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.5266C" } } }