{ "id": "1306.5008", "version": "v2", "published": "2013-06-20T21:59:58.000Z", "updated": "2014-11-12T21:33:56.000Z", "title": "Likelihood Orders for some Random Walks on the Symmetric Group", "authors": [ "Megan Bernstein" ], "categories": [ "math.CO", "math.PR" ], "abstract": "Several cycle lexicographical orders are found to describe the relative likelihood of elements of the random walks on the symmetric group generated by the conjugacy classes of transpositions, 3-cycles, and n-cycles. Spectral analysis finds sufficient time for the orders to hold. This partially answers a conjecture that the n-cycles are the least likely elements of the transposition walk on the symmetric group. A likelihood order contributes to understanding the total variation distance and separation distance for a random walk.", "revisions": [ { "version": "v1", "updated": "2013-06-20T21:59:58.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2014-11-12T21:33:56.000Z" } ], "analyses": { "keywords": [ "random walk", "symmetric group", "spectral analysis finds sufficient time", "total variation distance", "likelihood order contributes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.5008B" } } }