{ "id": "1306.4494", "version": "v2", "published": "2013-06-19T11:29:41.000Z", "updated": "2014-05-14T10:57:36.000Z", "title": "$L^p$-integrability, dimensions of supports of fourier transforms and applications", "authors": [ "K. S. Senthil Raani" ], "journal": "Journal of Fourier Analysis and Applications, August 2014, Volume 20, Issue 4, pp 801-815", "doi": "10.1007/s00041-014-9334-5", "categories": [ "math.FA" ], "abstract": "It is proved that there does not exist any non zero function in $L^p(\\R^n)$ with $1\\leq p\\leq 2n/\\alpha$ if its Fourier transform is supported by a set of finite packing $\\alpha$-measure where $0<\\alpha2n/\\alpha$. The result is applied to prove $L^p$ Wiener-Tauberian theorems for $\\R^n$ and M(2).", "revisions": [ { "version": "v2", "updated": "2014-05-14T10:57:36.000Z" } ], "analyses": { "subjects": [ "42B10", "37F35", "40E05", "28A78" ], "keywords": [ "fourier transform", "integrability", "applications", "dimensions", "non zero function" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.4494S" } } }