{ "id": "1306.4283", "version": "v4", "published": "2013-06-18T18:16:30.000Z", "updated": "2013-08-17T01:29:20.000Z", "title": "Rational curves on quotients of abelian varieties by finite groups", "authors": [ "Bo-Hae Im", "Michael Larsen" ], "comment": "10 pages", "categories": [ "math.AG" ], "abstract": "In [3], it is proved that the quotient of an abelian variety $A$ by a finite order automorphism $g$ is uniruled if and only if some power of $g$ satisfies a numerical condition $0<\\age(g^k)<1$. In this paper, we show that $\\age(g^k)=1$ is enough to guarantee that $A/\\langle g\\rangle$ has at least one rational curve.", "revisions": [ { "version": "v4", "updated": "2013-08-17T01:29:20.000Z" } ], "analyses": { "subjects": [ "14K05" ], "keywords": [ "abelian variety", "rational curve", "finite groups", "finite order automorphism", "numerical condition" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.4283I" } } }