{ "id": "1306.4192", "version": "v1", "published": "2013-06-18T13:37:14.000Z", "updated": "2013-06-18T13:37:14.000Z", "title": "Elliptic Euler-Poisson-Darboux equation, critical points and integrable systems", "authors": [ "B. G. Konopelchenko", "G. Ortenzi" ], "comment": "18 pages, no figures", "categories": [ "math-ph", "math.MP", "nlin.SI" ], "abstract": "Structure and properties of families of critical points for classes of functions $W(z,\\bar{z})$ obeying the elliptic Euler-Poisson-Darboux equation $E(1/2,1/2)$ are studied. General variational and differential equations governing the dependence of critical points in variational (deformation) parameters are found. Explicit examples of the corresponding integrable quasi-linear differential systems and hierarchies are presented There are the extended dispersionless Toda/nonlinear Schr\\\"{o}dinger hierarchies, the \"inverse\" hierarchy and equations associated with the real-analytic Eisenstein series $E(\\beta,\\bar{{\\beta}};1/2)$among them. Specific bi-Hamiltonian structure of these equations is also discussed.", "revisions": [ { "version": "v1", "updated": "2013-06-18T13:37:14.000Z" } ], "analyses": { "keywords": [ "elliptic euler-poisson-darboux equation", "critical points", "integrable systems", "real-analytic eisenstein series", "corresponding integrable quasi-linear differential systems" ], "tags": [ "journal article" ], "publication": { "doi": "10.1088/1751-8113/46/48/485204", "journal": "Journal of Physics A Mathematical General", "year": 2013, "month": "Dec", "volume": 46, "number": 48, "pages": 485204 }, "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013JPhA...46V5204K" } } }