{ "id": "1306.3965", "version": "v1", "published": "2013-06-17T19:31:52.000Z", "updated": "2013-06-17T19:31:52.000Z", "title": "On the theorem of the primitive element with applications to the representation theory of associative and Lie algebras", "authors": [ "Leandro Cagliero", "Fernando Szechtman" ], "categories": [ "math.RT" ], "abstract": "We describe of all finite dimensional uniserial representations of a commutative associative (resp. abelian Lie) algebra over a perfect (resp. sufficiently large perfect) field. In the Lie case the size of the field depends on the answer to following question, considered and solved in this paper. Let $K/F$ be a finite separable field extension and let $x,y\\in K$. When is $F[x,y]=F[\\alpha x+\\beta y]$ for some non-zero elements $\\alpha,\\beta\\in F$?", "revisions": [ { "version": "v1", "updated": "2013-06-17T19:31:52.000Z" } ], "analyses": { "subjects": [ "17B10", "13C05", "12F10", "12E20" ], "keywords": [ "representation theory", "lie algebras", "primitive element", "applications", "finite dimensional uniserial representations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.3965C" } } }