{ "id": "1306.3747", "version": "v2", "published": "2013-06-17T06:39:51.000Z", "updated": "2014-05-08T07:47:15.000Z", "title": "Cayley graphs on abelian groups", "authors": [ "Edward Dobson", "Pablo Spiga", "Gabriel Verret" ], "categories": [ "math.CO" ], "abstract": "Let $A$ be an abelian group and let $\\iota$ be the automorphism of $A$ defined by $i:a\\mapsto a^{-1}$. A Cayley graph $\\Gamma=\\mathrm{Cay}(A,S)$ is said to have an automorphism group \\emph{as small as possible} if $\\mathrm{Aut}(\\Gamma)= A\\rtimes\\langle i\\rangle$. In this paper, we show that almost all Cayley graphs on abelian groups have automorphism group as small as possible, proving a conjecture of Babai and Godsil.", "revisions": [ { "version": "v2", "updated": "2014-05-08T07:47:15.000Z" } ], "analyses": { "keywords": [ "abelian group", "cayley graph", "automorphism group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.3747D" } } }