{ "id": "1306.3631", "version": "v5", "published": "2013-06-16T07:07:29.000Z", "updated": "2015-11-09T19:27:23.000Z", "title": "Viscosity solutions of obstacle problems for Fully nonlinear path-dependent PDEs", "authors": [ "Ibrahim Ekren" ], "categories": [ "math.PR" ], "abstract": "In this article, we adapt the definition of viscosity solutions to the obstacle problem for fully nonlinear path-dependent PDEs with data uniformly continuous in $(t,\\omega)$, and generator Lipschitz continuous in $(y,z,\\gamma)$. We prove that our definition of viscosity solutions is consistent with the classical solutions, and satisfy a stability result. We show that the value functional defined via the second order reflected backward stochastic differential equation is the unique viscosity solution of the variational inequalities.", "revisions": [ { "version": "v4", "updated": "2014-05-29T16:33:32.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v5", "updated": "2015-11-09T19:27:23.000Z" } ], "analyses": { "subjects": [ "35D40", "35K10", "60H10", "60H30" ], "keywords": [ "fully nonlinear path-dependent pdes", "viscosity solution", "obstacle problem", "backward stochastic differential equation", "order reflected backward stochastic" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.3631E" } } }