{ "id": "1306.3322", "version": "v1", "published": "2013-06-14T08:04:31.000Z", "updated": "2013-06-14T08:04:31.000Z", "title": "Backward Uniqueness for Parabolic Operators with Variable Coefficients in a Half Space", "authors": [ "Jie Wu", "Liqun Zhang" ], "comment": "32 pages", "categories": [ "math.AP" ], "abstract": "It is shown that a function $u$ satisfying $|\\partial_tu+\\sum_{i,j}\\partial_i(a^{ij}\\partial_ju)|\\leq N(|u|+|\\nabla u|)$, $|u(x,t)|\\leq Ne^{N|x|^2}$ in $\\mathbb{R}^n_+\\times[0,T]$ and $u(x,0)=0$ in $\\mathbb{R}^n_+$ under certain conditions on $\\{a^{ij}\\}$ must vanish identically in $\\mathbb{R}^n_+\\times[0,T]$. The main point of the result is that the conditions imposed on $\\{a^{ij}\\}$ are of the type: $\\{a^{ij}\\}$ are Lipschitz and $|\\nabla_xa^{ij}(x,t)|\\leq \\frac{E}{|x|}$, where $E$ is less than a given number, and the conditions are in some sense optimal.", "revisions": [ { "version": "v1", "updated": "2013-06-14T08:04:31.000Z" } ], "analyses": { "subjects": [ "35A02" ], "keywords": [ "parabolic operators", "half space", "variable coefficients", "backward uniqueness", "conditions" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.3322W" } } }