{ "id": "1306.2887", "version": "v2", "published": "2013-06-12T16:37:53.000Z", "updated": "2014-10-10T20:20:18.000Z", "title": "Delocalization of eigenvectors of random matrices with independent entries", "authors": [ "Mark Rudelson", "Roman Vershynin" ], "comment": "24 pages", "categories": [ "math.PR" ], "abstract": "We prove that an n by n random matrix G with independent entries is completely delocalized. Suppose the entries of G have zero means, variances uniformly bounded below, and a uniform tail decay of exponential type. Then with high probability all unit eigenvectors of G have all coordinates of magnitude O(n^{-1/2}), modulo logarithmic corrections. This comes a consequence of a new, geometric, approach to delocalization for random matrices.", "revisions": [ { "version": "v1", "updated": "2013-06-12T16:37:53.000Z", "comment": "20 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-10-10T20:20:18.000Z" } ], "analyses": { "subjects": [ "60B20" ], "keywords": [ "random matrices", "independent entries", "delocalization", "uniform tail decay", "modulo logarithmic corrections" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.2887R" } } }