{ "id": "1306.2736", "version": "v1", "published": "2013-06-12T07:52:38.000Z", "updated": "2013-06-12T07:52:38.000Z", "title": "Quadratic polynomials, multipliers and equidistribution", "authors": [ "Xavier Buff", "Thomas Gauthier" ], "categories": [ "math.DS", "math.CV" ], "abstract": "Given a sequence of complex numbers {\\rho}_n, we study the asymptotic distribution of the sets of parameters c {\\epsilon} C such that the quadratic maps z^2 +c has a cycle of period n and multiplier {\\rho}_n. Assume 1/n.log|{\\rho}_n| tends to L. If L {\\leq} log 2, they equidistribute on the boundary of the Mandelbrot set. If L > log 2 they equidistribute on the equipotential of the Mandelbrot set of level 2L - 2 log 2.", "revisions": [ { "version": "v1", "updated": "2013-06-12T07:52:38.000Z" } ], "analyses": { "keywords": [ "quadratic polynomials", "multiplier", "equidistribution", "mandelbrot set", "asymptotic distribution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.2736B" } } }