{ "id": "1306.2704", "version": "v1", "published": "2013-06-12T03:40:01.000Z", "updated": "2013-06-12T03:40:01.000Z", "title": "Regularity for almost minimizers with free boundary", "authors": [ "Guy David", "Tatiana Toro" ], "categories": [ "math.AP" ], "abstract": "In this paper we study the local regularity of almost minimizers of the functional \\begin{equation*} J(u)=\\int_\\Omega |\\nabla u(x)|^2 +q^2_+(x)\\chi_{\\{u>0\\}}(x) +q^2_-(x)\\chi_{\\{u<0\\}}(x) \\end{equation*} where $q_\\pm \\in L^\\infty(\\Omega)$. Almost minimizers do not satisfy a PDE or a monotonicity formula like minimizers do (see \\cite{AC}, \\cite{ACF}, \\cite{CJK}, \\cite{W}). Nevertheless we succeed in proving that they are locally Lipschitz, which is the optimal regularity for minimizers.", "revisions": [ { "version": "v1", "updated": "2013-06-12T03:40:01.000Z" } ], "analyses": { "keywords": [ "free boundary", "minimizers", "monotonicity formula", "optimal regularity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.2704D" } } }