{ "id": "1306.2582", "version": "v3", "published": "2013-06-11T17:02:34.000Z", "updated": "2015-04-15T22:25:26.000Z", "title": "On endotrivial modules for Lie superalgebras", "authors": [ "Andrew J. Talian" ], "comment": "27 pages; updates to section 7", "doi": "10.1016/j.jalgebra.2015.02.022", "categories": [ "math.RT" ], "abstract": "Let $\\mathfrak{g} = \\mathfrak{g}_{\\overline{0}} \\oplus \\mathfrak{g}_{\\overline{1}}$ be a Lie superalgebra over an algebraically closed field, $k$, of characteristic 0. An endotrivial $\\mathfrak{g}$-module, $M$, is a $\\mathfrak{g}$-supermodule such that $\\operatorname{Hom}_k(M,M) \\cong k_{ev} \\oplus P$ as $\\mathfrak{g}$-supermodules, where $k_{ev}$ is the trivial module concentrated in degree $\\overline{0}$ and $P$ is a projective $\\mathfrak{g}$-supermodule. In the stable module category, these modules form a group under the operation of the tensor product. We show that for an endotrivial module $M$, the syzygies $\\Omega^n(M)$ are also endotrivial, and for certain Lie superalgebras of particular interest, we show that $\\Omega^1(k_{ev})$ and the parity change functor actually generate the group of endotrivials. Additionally, for a broader class of Lie superalgebras, for a fixed $n$, we show that there are finitely many endotrivial modules of dimension $n$.", "revisions": [ { "version": "v2", "updated": "2013-07-30T08:00:05.000Z", "abstract": "Let $\\mathfrak{g}$ be a Lie superalgebra over an algebraically closed field, $k$, of characteristic 0. An endotrivial $\\mathfrak{g}$-module, $M$, is a $\\mathfrak{g}$-supermodule such that $\\Hom_k(M,M) \\cong k \\oplus P$ as $\\mathfrak{g}$-supermodules, where $k$ is the trivial module concentrated in degree $\\bar{0}$ and $P$ is a projective $\\mathfrak{g}$-supermodule. In the stable module category, these modules form a group under the operation of the tensor product. We show that for an endotrivial module $M$, the syzygies $\\Omega^{n}(M)$ are also endotrivial and for certain Lie superalgebras of particular interest, we show that $\\Omega^{1}(k)$ and the parity change functor actually generate the group of endotrivials. Additionally, for a broader class of Lie superalgebras, for a fixed $n$, we show that there are finitely many endotrivial modules of dimension $n$.", "comment": "21 pages; updates to section 5", "journal": null, "doi": null }, { "version": "v3", "updated": "2015-04-15T22:25:26.000Z" } ], "analyses": { "keywords": [ "lie superalgebra", "endotrivial module", "supermodule", "parity change functor", "broader class" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.2582T" } } }