{ "id": "1306.2521", "version": "v3", "published": "2013-06-11T13:43:53.000Z", "updated": "2014-09-04T16:27:50.000Z", "title": "Invariance principle for the random conductance model in a degenerate ergodic environment", "authors": [ "Sebastian Andres", "Jean-Dominique Deuschel", "Martin Slowik" ], "comment": "24 pages, 1 figure, to appear in Ann. Probab, companion paper to arXiv:1312.5473", "categories": [ "math.PR" ], "abstract": "We study a continuous time random walk, $X$, on $\\mathbb{Z}^d$ in an environment of random conductances taking values in $(0, \\infty)$. We assume that the law of the conductances is ergodic with respect to space shifts. We prove a quenched invariance principle for $X$ under some moment conditions of the environment. The key result on the sublinearity of the corrector is obtained by Moser's iteration scheme.", "revisions": [ { "version": "v2", "updated": "2014-02-16T10:40:03.000Z", "comment": "24 pages, 1 figure", "journal": null, "doi": null }, { "version": "v3", "updated": "2014-09-04T16:27:50.000Z" } ], "analyses": { "subjects": [ "60K37", "60F17", "82C41" ], "keywords": [ "random conductance model", "degenerate ergodic environment", "mosers iteration scheme", "continuous time random walk", "moment conditions" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.2521A" } } }