{ "id": "1306.2190", "version": "v1", "published": "2013-06-10T13:08:19.000Z", "updated": "2013-06-10T13:08:19.000Z", "title": "Remarks on global regularity of 2D generalized MHD equations", "authors": [ "Baoquan Yuan", "Linna Bai" ], "categories": [ "math.AP" ], "abstract": "In this paper, we investigate the global regularity of 2D generalized MHD equations, in which the dissipation term and magnetic diffusion term are $\\nu(-\\Delta)^\\alpha u$ and $\\eta (-\\Delta)^\\beta b$ respectively. Let $(u_{0}, b_{0})\\in H^{s}$ with $s\\geq2$, it is showed that the smooth solution $(u(x,t),b(x,t))$ is globally regular for the case $ 0\\leq\\alpha\\leq\\{1}{2}, \\alpha+\\beta > \\{3}{2}$.", "revisions": [ { "version": "v1", "updated": "2013-06-10T13:08:19.000Z" } ], "analyses": { "keywords": [ "2d generalized mhd equations", "global regularity", "magnetic diffusion term", "dissipation term", "smooth solution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.2190Y" } } }