{ "id": "1306.1715", "version": "v3", "published": "2013-06-07T13:14:24.000Z", "updated": "2013-07-04T12:05:06.000Z", "title": "Initial λ-compactness in linearly ordered spaces", "authors": [ "Paolo Lipparini" ], "comment": "v.3 simplified the proof of (4) implies (5) in the Theorem", "categories": [ "math.GN" ], "abstract": "We show that a linearly ordered topological space is initially \\lambda-compact if and only if it is \\lambda-bounded, that is, every set of cardinality $\\leq \\lambda$ has compact closure. As a consequence, every product of initially \\lambda-compact linearly ordered topological spaces is initially \\lambda-compact.", "revisions": [ { "version": "v3", "updated": "2013-07-04T12:05:06.000Z" } ], "analyses": { "subjects": [ "54F05", "54A20", "54D20", "54B10" ], "keywords": [ "linearly ordered spaces", "linearly ordered topological space", "compact closure", "cardinality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.1715L" } } }