{ "id": "1306.1197", "version": "v2", "published": "2013-06-05T18:04:28.000Z", "updated": "2014-10-23T02:17:52.000Z", "title": "Sublinear variance in first-passage percolation for general distributions", "authors": [ "Michael Damron", "Jack Hanson", "Philippe Sosoe" ], "comment": "32 pages. We added a proof sketch and fixed the proof of Theorem 2.3 and the bound on term (6.18)", "categories": [ "math.PR" ], "abstract": "We prove that the variance of the passage time from the origin to a point x in first-passage percolation on Z^d is sublinear in the distance to x when d \\geq 2, obeying the bound Cx/(log x), under minimal assumptions on the edge-weight distribution. The proof applies equally to absolutely continuous, discrete and singular continuous distributions and mixtures thereof, and requires only 2+log moments. The main result extends work of Benjamini-Kalai-Schramm and Benaim-Rossignol.", "revisions": [ { "version": "v1", "updated": "2013-06-05T18:04:28.000Z", "comment": "29 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-10-23T02:17:52.000Z" } ], "analyses": { "keywords": [ "first-passage percolation", "sublinear variance", "general distributions", "main result extends work", "passage time" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.1197D" } } }