{ "id": "1306.0986", "version": "v1", "published": "2013-06-05T05:30:11.000Z", "updated": "2013-06-05T05:30:11.000Z", "title": "A topological characterization of omega-limit sets on dynamical systems", "authors": [ "Hahng-Yun Chu", "Ahyoung Kim", "Jong-Suh Park" ], "categories": [ "math.DS" ], "abstract": "In this article, we deal with several notions in dynamical systems. Firstly, we prove that both closure function and orbital function are idempotent on set-valued dynamical systems. And we show that the compact limit set of a connected set is also connected. Furthermore, we prove that the $\\Omega$-limit set of a compact set is quasi-attracting.", "revisions": [ { "version": "v1", "updated": "2013-06-05T05:30:11.000Z" } ], "analyses": { "keywords": [ "omega-limit sets", "topological characterization", "compact limit set", "closure function", "orbital function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.0986C" } } }