{ "id": "1306.0461", "version": "v1", "published": "2013-06-03T15:37:09.000Z", "updated": "2013-06-03T15:37:09.000Z", "title": "The Ramsey number of the clique and the hypercube", "authors": [ "Gonzalo Fiz Pontiveros", "Simon Griffiths", "Robert Morris", "David Saxton", "Jozef Skokan" ], "comment": "27 pages", "categories": [ "math.CO" ], "abstract": "The Ramsey number r(K_s,Q_n) is the smallest positive integer N such that every red-blue colouring of the edges of the complete graph K_N on N vertices contains either a red n-dimensional hypercube, or a blue clique on s vertices. Answering a question of Burr and Erd\\H{o}s from 1983, and improving on recent results of Conlon, Fox, Lee and Sudakov, and of the current authors, we show that r(K_s,Q_n) = (s-1) (2^n - 1) + 1 for every s \\in \\N and every sufficiently large n \\in \\N.", "revisions": [ { "version": "v1", "updated": "2013-06-03T15:37:09.000Z" } ], "analyses": { "keywords": [ "ramsey number", "complete graph", "current authors", "vertices contains", "smallest positive integer" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.0461F" } } }