{ "id": "1306.0449", "version": "v3", "published": "2013-06-03T15:07:53.000Z", "updated": "2013-09-11T13:49:04.000Z", "title": "On supercompactness and the continuum function", "authors": [ "Brent Cody", "Menachem Magidor" ], "comment": "12 pages", "categories": [ "math.LO" ], "abstract": "Given a cardinal $\\kappa$ that is $\\lambda$-supercompact for some regular cardinal $\\lambda\\geq\\kappa$ and assuming $\\GCH$, we show that one can force the continuum function to agree with any function $F:[\\kappa,\\lambda]\\cap\\REG\\to\\CARD$ satisfying $\\forall\\alpha,\\beta\\in\\dom(F)$ $\\alpha<\\cf(F(\\alpha))$ and $\\alpha<\\beta$ $\\implies$ $F(\\alpha)\\leq F(\\beta)$, while preserving the $\\lambda$-supercompactness of $\\kappa$ from a hypothesis that is of the weakest possible consistency strength, namely, from the hypothesis that there is an elementary embedding $j:V\\to M$ with critical point $\\kappa$ such that $M^\\lambda\\subseteq M$ and $j(\\kappa)>F(\\lambda)$. Our argument extends Woodin's technique of surgically modifying a generic filter to a new case: Woodin's key lemma applies when modifications are done on the range of $j$, whereas our argument uses a new key lemma to handle modifications done off of the range of $j$ on the ghost coordinates. This work answers a question of Friedman and Honzik [FH2012]. We also discuss several related open questions.", "revisions": [ { "version": "v3", "updated": "2013-09-11T13:49:04.000Z" } ], "analyses": { "subjects": [ "03E35", "03E55" ], "keywords": [ "continuum function", "supercompactness", "argument extends woodins technique", "regular cardinal", "work answers" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.0449C" } } }