{ "id": "1306.0445", "version": "v1", "published": "2013-06-03T14:57:34.000Z", "updated": "2013-06-03T14:57:34.000Z", "title": "Analytic expanding circle maps with explicit spectra", "authors": [ "Julia Slipantschuk", "Oscar F. Bandtlow", "Wolfram Just" ], "comment": "15 pages, 3 figures", "categories": [ "math.DS", "math.SP", "nlin.CD" ], "abstract": "We show that for any $\\lambda \\in \\mathbb{C}$ with $|\\lambda|<1$ there exists an analytic expanding circle map such that the eigenvalues of the associated transfer operator (acting on holomorphic functions) are precisely the nonnegative powers of $\\lambda$ and $\\bar{\\lambda}$. As a consequence we obtain a counterexample to a variant of a conjecture of Mayer on the reality of spectra of transfer operators.", "revisions": [ { "version": "v1", "updated": "2013-06-03T14:57:34.000Z" } ], "analyses": { "subjects": [ "37E05", "37E10", "37A25", "47A35" ], "keywords": [ "analytic expanding circle map", "explicit spectra", "associated transfer operator", "holomorphic functions", "consequence" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }