{ "id": "1305.7065", "version": "v3", "published": "2013-05-30T11:17:16.000Z", "updated": "2013-08-28T14:05:43.000Z", "title": "Biharmonic maps from a complete Riemannian manifold into a non-positively curved manifold", "authors": [ "Shun Maeta" ], "comment": "13 pages", "categories": [ "math.DG" ], "abstract": "We consider biharmonic maps $\\phi:(M,g)\\rightarrow (N,h)$ from a complete Riemannian manifold into a Riemannian manifold with non-positive sectional curvature. Assume that $\\alpha$ satisfies $1<\\alpha<\\infty$. If for such an $\\alpha$, $\\int_M|\\tau(\\phi)|^{\\alpha}dv_g<\\infty$ and $\\int_M|d\\phi|^2dv_g<\\infty,$ where $\\tau(\\phi)$ is the tension field of $\\phi$, then we show that $\\phi$ is harmonic. For a biharmonic submanifold, we obtain that the above assumption $\\int_M|d\\phi|^2dv_g<\\infty$ is not necessary. These results give affirmative partial answers to the global version of generalized Chen's conjecture.", "revisions": [ { "version": "v3", "updated": "2013-08-28T14:05:43.000Z" } ], "analyses": { "subjects": [ "58E20", "53C43" ], "keywords": [ "complete riemannian manifold", "biharmonic maps", "non-positively curved manifold", "non-positive sectional curvature", "biharmonic submanifold" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.7065M" } } }