{ "id": "1305.7020", "version": "v1", "published": "2013-05-30T07:03:21.000Z", "updated": "2013-05-30T07:03:21.000Z", "title": "Biharmonic surfaces of constant mean curvature", "authors": [ "E. Loubeau", "C. Oniciuc" ], "comment": "15 pages", "categories": [ "math.DG" ], "abstract": "We compute a Simons' type formula for the stress-energy tensor of biharmonic maps from surfaces. Specializing to Riemannian immersions, we prove several rigidity results for biharmonic CMC surfaces, putting in evidence the influence of the Gaussian curvature on pseudo-umbilicity. Finally, the condition of biharmonicity is shown to enable an extension of the classical Hopf theorem to CMC surfaces in any ambient Riemannian manifold.", "revisions": [ { "version": "v1", "updated": "2013-05-30T07:03:21.000Z" } ], "analyses": { "subjects": [ "53C42", "53C43", "58E20" ], "keywords": [ "constant mean curvature", "biharmonic surfaces", "biharmonic cmc surfaces", "ambient riemannian manifold", "rigidity results" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.7020L" } } }