{ "id": "1305.6781", "version": "v4", "published": "2013-05-29T12:46:34.000Z", "updated": "2017-07-18T02:45:33.000Z", "title": "Generators for abelian extensions of number fields", "authors": [ "Ja Kyung Koo", "Dong Hwa Shin" ], "comment": "We will not publish this paper", "categories": [ "math.NT" ], "abstract": "Let $U/L$ be a finite abelian extension of number fields. We first construct a universal primitive generator of $U$ over $L$ whose relative trace to any intermediate field $F$ becomes a generator of $F$ over $L$, too. We also develop a similar argument in terms of norm. As its examples we investigate towers of ray class fields over imaginary quadratic fields. And, we further present a new method of finding a normal element for the extension $U/L$.", "revisions": [ { "version": "v3", "updated": "2013-07-04T02:44:30.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v4", "updated": "2017-07-18T02:45:33.000Z" } ], "analyses": { "subjects": [ "12F05", "11G16" ], "keywords": [ "number fields", "finite abelian extension", "ray class fields", "imaginary quadratic fields", "similar argument" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.6781K" } } }