{ "id": "1305.6616", "version": "v2", "published": "2013-05-28T20:03:54.000Z", "updated": "2014-07-12T02:38:29.000Z", "title": "A refinement of Wilf-equivalence for patterns of length 4", "authors": [ "Jonathan Bloom" ], "comment": "10 pages", "categories": [ "math.CO" ], "abstract": "In their paper \\cite{DokosDwyer:Permutat12}, Dokos et al. conjecture that the major index statistic is equidistributed among 1423-avoiding, 2413-avoiding, and 2314-avoiding permutations. In this paper we confirm this conjecture by constructing two major index preserving bijections, $\\Theta:S_n(1423)\\to S_n(2413)$ and $\\Omega:S_n(2314)\\to S_n(2413)$. In fact, we show that $\\Theta$ (respectively, $\\Omega$) preserves numerous other statistics including the descent set, right-to-left maximum (respectively, left-to-right minimum), and a new statistic we call top-steps (respectively, bottom-steps).", "revisions": [ { "version": "v2", "updated": "2014-07-12T02:38:29.000Z" } ], "analyses": { "subjects": [ "05A05", "05A19" ], "keywords": [ "refinement", "wilf-equivalence", "major index statistic", "major index preserving bijections", "left-to-right minimum" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.6616B" } } }