{ "id": "1305.6268", "version": "v1", "published": "2013-05-27T16:13:11.000Z", "updated": "2013-05-27T16:13:11.000Z", "title": "A geometric definition of Gabrielov numbers", "authors": [ "Wolfgang Ebeling", "Atsushi Takahashi" ], "comment": "13 pages, 6 figures", "categories": [ "math.AG" ], "abstract": "Gabrielov numbers describe certain Coxeter-Dynkin diagrams of the 14 exceptional unimodal singularities and play a role in Arnold's strange duality. In a previous paper, the authors defined Gabrielov numbers of a cusp singularity with an action of a finite abelian subgroup $G$ of ${\\rm SL}(3,\\CC)$ using the Gabrielov numbers of the cusp singularity and data of the group $G$. Here we consider a crepant resolution $Y \\to \\CC^3/G$ and the preimage $Z$ of the image of the Milnor fibre of the cusp singularity under the natural projection $\\CC^3 \\to \\CC^3/G$. Using the McKay correspondence, we compute the homology of the pair $(Y,Z)$. We construct a basis of the relative homology group $H_3(Y,Z;\\QQ)$ with a Coxeter-Dynkin diagram where one can read off the Gabrielov numbers.", "revisions": [ { "version": "v1", "updated": "2013-05-27T16:13:11.000Z" } ], "analyses": { "subjects": [ "32S25", "32S55", "14E16", "14L30" ], "keywords": [ "geometric definition", "cusp singularity", "coxeter-dynkin diagram", "authors defined gabrielov numbers", "exceptional unimodal singularities" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.6268E" } } }