{ "id": "1305.6024", "version": "v1", "published": "2013-05-26T14:07:31.000Z", "updated": "2013-05-26T14:07:31.000Z", "title": "The subadditivity of the Kodaira Dimension for Fibrations of Relative Dimension One in Positive Characteristics", "authors": [ "Yifei Chen", "Lei Zhang" ], "comment": "14 pages, welcome comments", "categories": [ "math.AG" ], "abstract": "Let $f:X\\rightarrow Z$ be a separable fibration of relative dimension 1 between smooth projective varieties over an algebraically closed field $k$ of positive characteristic. We prove the subadditivity of Kodaira dimension $\\kappa(X)\\geq\\kappa(Z)+\\kappa(F)$, where $F$ is the generic geometric fiber of $f$, and $\\kappa(F)$ is the Kodaira dimension of the normalization of $F$. Moreover, if $\\dim X=2$ and $\\dim Z=1$, we have a stronger inequality $\\kappa(X)\\geq \\kappa(Z)+\\kappa_1(F)$ where $\\kappa_1(F)=\\kappa(F,\\omega^o_F)$ is the Kodaira dimension of the dualizing sheaf $\\omega_F^o$.", "revisions": [ { "version": "v1", "updated": "2013-05-26T14:07:31.000Z" } ], "analyses": { "keywords": [ "kodaira dimension", "relative dimension", "positive characteristic", "subadditivity", "generic geometric fiber" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.6024C" } } }