{ "id": "1305.5325", "version": "v1", "published": "2013-05-23T06:38:16.000Z", "updated": "2013-05-23T06:38:16.000Z", "title": "Soliton resolution for equivariant wave maps to the sphere", "authors": [ "Raphaël Côte" ], "comment": "43 pages", "categories": [ "math.AP" ], "abstract": "We consider finite energy corotationnal wave maps with target manifold $\\m S^2$. We prove that for a sequence of times, they decompose as a sum of decoupled harmonic maps in the light cone, and a smooth wave map (in the blow case) or a linear scattering term (in the global case), up to an error which tends to 0 in the energy space.", "revisions": [ { "version": "v1", "updated": "2013-05-23T06:38:16.000Z" } ], "analyses": { "keywords": [ "equivariant wave maps", "soliton resolution", "finite energy corotationnal wave maps", "smooth wave map", "decoupled harmonic maps" ], "note": { "typesetting": "TeX", "pages": 43, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.5325C" } } }