{ "id": "1305.5102", "version": "v1", "published": "2013-05-22T12:23:13.000Z", "updated": "2013-05-22T12:23:13.000Z", "title": "A bound for the Milnor number of plane curve singularities", "authors": [ "Arkadiusz Płoski" ], "categories": [ "math.AG" ], "abstract": "Let $f=0$ be a plane algebraic curve of degree $d>1$ with an isolated singular point at the origin of the complex plane. We show that the Milnor number $\\mu_0(f)$ is less than or equal to $(d-1)^2-\\left[\\frac{d}{2}\\right]$, unless $f=0$ is a set of $d$ concurrent lines passing through 0. Then we characterize the curves $f=0$ for which $\\mu_0(f)=(d-1)^2-\\left[\\frac{d}{2}\\right]$.", "revisions": [ { "version": "v1", "updated": "2013-05-22T12:23:13.000Z" } ], "analyses": { "keywords": [ "plane curve singularities", "milnor number", "plane algebraic curve", "isolated singular point", "complex plane" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.5102P" } } }