{ "id": "1305.4495", "version": "v1", "published": "2013-05-20T10:51:25.000Z", "updated": "2013-05-20T10:51:25.000Z", "title": "Right inverses for partial differential operators on spaces of Whitney functions", "authors": [ "Tomasz Ciaƛ" ], "categories": [ "math.FA", "math.AP" ], "abstract": "For v\\in R^n let K be a compact set in R^n containing a suitable smooth surface and such that the intersection {tv+x:t\\in R}\\cap K is a closed interval or a single point for all x\\in K. We prove that every linear first order differential operator with constant coefficients in direction v on space of Whitney functions E(K) admits a continuous linear right inverse.", "revisions": [ { "version": "v1", "updated": "2013-05-20T10:51:25.000Z" } ], "analyses": { "subjects": [ "35E99", "35F05", "46E10" ], "keywords": [ "partial differential operators", "whitney functions", "linear first order differential operator", "continuous linear right inverse", "suitable smooth surface" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.4495C" } } }