{ "id": "1305.4374", "version": "v1", "published": "2013-05-19T15:45:49.000Z", "updated": "2013-05-19T15:45:49.000Z", "title": "Estimates of the uniform approximations by Zygmund sums on the classes of convolutions of periodic functions", "authors": [ "A. S. Serdyuk", "U. Z. Grabova" ], "comment": "17 pages, in Ukrainian", "journal": "Zb. Pr. Inst. Mat. NAN Ukr. 10, No 1 (2013), p. 222-244", "categories": [ "math.CA" ], "abstract": "We obtain order-exact estimates for uniform approximations by using Zygmund sums $Z^{s}_{n}$ of classes $C^{\\psi}_{\\beta,p}$ of $2\\pi$-periodic continuous functions $f$ representable by convolutions of functions from unit balls of the space $L_{p}$, $1< p<\\infty$, with a fixed kernels $\\Psi_{\\beta}\\in L_{p'}$, $\\frac{1}{p}+\\frac{1}{p'}=1$. In addition, we find a set of allowed values of parameters (that define the class $C^{\\psi}_{\\beta,p}$ and the linear method $Z^{s}_{n}$) for which Zygmund sums and Fejer sums realize the order of the best uniform approximations by trigonometric polynomials of those classes.", "revisions": [ { "version": "v1", "updated": "2013-05-19T15:45:49.000Z" } ], "analyses": { "keywords": [ "zygmund sums", "periodic functions", "convolutions", "best uniform approximations", "periodic continuous functions" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.4374S" } } }