{ "id": "1305.4293", "version": "v1", "published": "2013-05-18T19:14:01.000Z", "updated": "2013-05-18T19:14:01.000Z", "title": "What is ... Equivariant Cohomology?", "authors": [ "Loring W. Tu" ], "comment": "4 pages, 1 figure, AMS-LaTeX", "journal": "Notices of the American Mathematical Society 58 (2011), pp. 423--426", "categories": [ "math.AT" ], "abstract": "When a torus acts on a compact oriented manifold with isolated fixed points, the equivariant localization formula of Atiyah--Bott--Berline--Vergne converts the integral of an equivariantly closed form to a finite sum over the fixed points, providing a powerful tool for computing integrals on a manifold. This article seeks to give an accessible exposition of the equivariant localization formula.", "revisions": [ { "version": "v1", "updated": "2013-05-18T19:14:01.000Z" } ], "analyses": { "subjects": [ "55N25", "55N91" ], "keywords": [ "equivariant cohomology", "equivariant localization formula", "fixed points", "compact oriented manifold", "torus acts" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Notices Amer. Math. Soc." }, "note": { "typesetting": "LaTeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.4293T" } } }