{ "id": "1305.3672", "version": "v1", "published": "2013-05-16T02:41:29.000Z", "updated": "2013-05-16T02:41:29.000Z", "title": "Restriction on the rank of marginals of bipartite pure states", "authors": [ "S. V. M. Satyanarayana" ], "categories": [ "quant-ph" ], "abstract": "Consider a qubit-qutrit ($2 \\times 3$) composite state space. Let $C(\\{1}{2}I_2, \\{1}{3}I_3)$ be a convex set of all possible states of composite system whose marginals are given by $\\{1}{2}I_2$ and $\\{1}{3}I_3$ in two and three dimensional spaces respectively. We prove that there exists no pure state in $C(\\{1}{2}I_2, \\{1}{3}I_3)$. Further we generalize this result to an arbitrary $m \\times n$ bipartite systems. We prove that for $m < n$, no pure state exists in the convex set $C(\\rho_A,\\rho_B)$, for an arbitrary $\\rho_A$ and rank of $\\rho_B >m$.", "revisions": [ { "version": "v1", "updated": "2013-05-16T02:41:29.000Z" } ], "analyses": { "keywords": [ "bipartite pure states", "convex set", "restriction", "composite state space", "composite system" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.3672S" } } }