{ "id": "1305.3542", "version": "v1", "published": "2013-05-15T16:57:15.000Z", "updated": "2013-05-15T16:57:15.000Z", "title": "Topological entropy of quadratic polynomials and dimension of sections of the Mandelbrot set", "authors": [ "Giulio Tiozzo" ], "comment": "56 pages, 10 figures", "categories": [ "math.DS" ], "abstract": "Let c be a real parameter in the Mandelbrot set, and f_c(z):= z^2 + c. We prove a formula relating the topological entropy of f_c to the Hausdorff dimension of the set of rays landing on the real Julia set, and to the Hausdorff dimension of the set of rays landing on the real section of the Mandelbrot set, to the right of the given parameter c. We then generalize the result by looking at the entropy of Hubbard trees: namely, we relate the Hausdorff dimension of the set of external angles which land on a certain slice of a principal vein in the Mandelbrot set to the topological entropy of the quadratic polynomial f_c restricted to its Hubbard tree.", "revisions": [ { "version": "v1", "updated": "2013-05-15T16:57:15.000Z" } ], "analyses": { "subjects": [ "37F45", "37B40", "37F20", "37F35" ], "keywords": [ "mandelbrot set", "topological entropy", "quadratic polynomial", "hausdorff dimension", "hubbard tree" ], "note": { "typesetting": "TeX", "pages": 56, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.3542T" } } }