{ "id": "1305.2571", "version": "v1", "published": "2013-05-12T09:21:15.000Z", "updated": "2013-05-12T09:21:15.000Z", "title": "Ground state solution for a Kirchhoff problem with exponential critical growth", "authors": [ "Giovany M. Figueiredo", "Uberlandio B. Severo" ], "categories": [ "math.AP" ], "abstract": "We establish the existence of a positive ground state solution for a Kirchhoff problem in $\\mathbb{R}^2$ involving critical exponential growth, that is, the nonlinearity behaves like $\\exp(\\alpha_{0}s^{2})$ as $|s| \\to \\infty$, for some $\\alpha_{0}>0$. In order to obtain our existence result we used minimax techniques combined with the Trudinger-Moser inequality.", "revisions": [ { "version": "v1", "updated": "2013-05-12T09:21:15.000Z" } ], "analyses": { "keywords": [ "exponential critical growth", "kirchhoff problem", "positive ground state solution", "trudinger-moser inequality", "minimax techniques" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.2571F" } } }