{ "id": "1305.2312", "version": "v2", "published": "2013-05-10T11:28:17.000Z", "updated": "2013-10-11T13:13:34.000Z", "title": "Characterization of ellipsoids through an overdetermined boundary value problem of Monge-Ampère type", "authors": [ "Barbara Brandolini", "Nunzia Gavitone", "Carlo Nitsch", "Cristina Trombetti" ], "comment": "Title change. Few typos", "categories": [ "math.AP" ], "abstract": "The study of the optimal constant in an Hessian-type Sobolev inequality leads to a fully nonlinear boundary value problem, overdetermined with non standard boundary conditions. We show that all the solutions have ellipsoidal symmetry. In the proof we use the maximum principle applied to a suitable auxiliary function in conjunction with an entropy estimate from affine curvature flow.", "revisions": [ { "version": "v2", "updated": "2013-10-11T13:13:34.000Z" } ], "analyses": { "subjects": [ "35N25", "35B50", "35J60" ], "keywords": [ "overdetermined boundary value problem", "monge-ampère type", "fully nonlinear boundary value problem", "non standard boundary conditions", "ellipsoids" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.2312B" } } }