{ "id": "1305.2088", "version": "v1", "published": "2013-05-09T13:39:20.000Z", "updated": "2013-05-09T13:39:20.000Z", "title": "Range-Renewal Structure in Continued Fractions", "authors": [ "Jun Wu", "Jian-Sheng Xie" ], "categories": [ "math.NT", "math.PR" ], "abstract": "Let $\\omega=[a_1, a_2, \\cdots]$ be the infinite expansion of continued fraction for an irrational number $\\omega \\in (0,1)$; let $R_n (\\omega)$ (resp. $R_{n, \\, k} (\\omega)$, $R_{n, \\, k+} (\\omega)$) be the number of distinct partial quotients each of which appears at least once (resp. exactly $k$ times, at least $k$ times) in the sequence $a_1, \\cdots, a_n$. In this paper it is proved that for Lebesgue almost all $\\omega \\in (0,1)$ and all $k \\geq 1$, $$ \\displaystyle \\lim_{n \\to \\infty} \\frac{R_n (\\omega)}{\\sqrt{n}}=\\sqrt{\\frac{\\pi}{\\log 2}}, \\quad \\lim_{n \\to \\infty} \\frac{R_{n, \\, k} (\\omega)}{R_n (\\omega)}=\\frac{C_{2 k}^k}{(2k-1) \\cdot 4^k}, \\quad \\lim_{n \\to \\infty} \\frac{R_{n, \\, k} (\\omega)}{R_{n, \\, k+} (\\omega)}=\\frac{1}{2k}. $$ The Hausdorff dimensions of certain level sets about $R_n$ are discussed.", "revisions": [ { "version": "v1", "updated": "2013-05-09T13:39:20.000Z" } ], "analyses": { "keywords": [ "continued fraction", "range-renewal structure", "distinct partial quotients", "irrational number", "infinite expansion" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.2088W" } } }