{ "id": "1305.2028", "version": "v1", "published": "2013-05-09T08:20:22.000Z", "updated": "2013-05-09T08:20:22.000Z", "title": "On some mean value results for the zeta-function in short intervals", "authors": [ "Aleksandar Ivić" ], "comment": "18 pages", "categories": [ "math.NT" ], "abstract": "Let $\\Delta(x)$ denote the error term in the Dirichlet divisor problem, and let $E(T)$ denote the error term in the asymptotic formula for the mean square of $|\\zeta(1/2+it)|$. If $E^*(t) := E(t) - 2\\pi\\Delta^*(t/(2\\pi))$ with $\\Delta^*(x) := -\\Delta(x) + 2\\Delta(2x) - \\frac{1}{2}\\Delta(4x)$ and $\\int_0^T E^*(t)\\,dt = \\frac{3}{4}\\pi T + R(T)$, then we obtain a number of results involving the moments of $|\\zeta(1/2+it)|$ in short intervals, by connecting them to the moments of $E^*(T)$ and $R(T)$ in short intervals. Upper bounds and asymptotic formulas for integrals of the form $$ \\int_T^{2T}\\left(\\int_{t-H}^{t+H}|\\zeta(1/2+iu)|^2\\,du\\right)^k\\,dt \\qquad(k\\in N, 1 \\ll H \\le T) $$ are also treated.", "revisions": [ { "version": "v1", "updated": "2013-05-09T08:20:22.000Z" } ], "analyses": { "subjects": [ "11M06" ], "keywords": [ "mean value results", "short intervals", "zeta-function", "asymptotic formula", "error term" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.2028I" } } }