{ "id": "1305.2017", "version": "v1", "published": "2013-05-09T06:57:50.000Z", "updated": "2013-05-09T06:57:50.000Z", "title": "Four transformations on the Catalan triangle", "authors": [ "Yidong Sun", "Fei Ma" ], "comment": "13pages", "categories": [ "math.CO" ], "abstract": "In this paper, we define four transformations on the classical Catalan triangle $\\mathcal{C}=(C_{n,k})_{n\\geq k\\geq 0}$ with $C_{n,k}=\\frac{k+1}{n+1}\\binom{2n-k}{n}$. The first three ones are based on the determinant and the forth is utilizing the permanent of a square matrix. It not only produces many known and new identities involving Catalan numbers, but also provides a new viewpoint on combinatorial triangles.", "revisions": [ { "version": "v1", "updated": "2013-05-09T06:57:50.000Z" } ], "analyses": { "subjects": [ "05A19", "05A15", "15A15" ], "keywords": [ "transformations", "catalan numbers", "square matrix", "combinatorial triangles", "classical catalan triangle" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.2017S" } } }