{ "id": "1305.1466", "version": "v2", "published": "2013-05-07T11:07:42.000Z", "updated": "2013-10-21T16:26:05.000Z", "title": "Large matchings in bipartite graphs have a rainbow matching", "authors": [ "Daniel Kotlar", "Ran Ziv" ], "journal": "European Journal of Combinatorics. Vol. 38, 97-101 (2013)", "categories": [ "math.CO" ], "abstract": "Let $g(n)$ be the least number such that every collection of $n$ matchings, each of size at least $g(n)$, in a bipartite graph, has a full rainbow matching. Aharoni and Berger \\cite{AhBer} conjectured that $g(n)=n+1$ for every $n>1$. This generalizes famous conjectures of Ryser, Brualdi and Stein. Recently, Aharoni, Charbit and Howard \\cite{ACH} proved that $g(n)\\le\\lfloor\\frac{7}{4}n\\rfloor$. We prove that $g(n)\\le\\lfloor\\frac{5}{3} n\\rfloor$.", "revisions": [ { "version": "v2", "updated": "2013-10-21T16:26:05.000Z" } ], "analyses": { "keywords": [ "bipartite graph", "large matchings", "generalizes famous conjectures", "collection", "full rainbow matching" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.1466K" } } }